Journal of Computational Physié§3,481-511 (2001)

®
doi:10.1006/jcph.2001.6889, available online at http://www.idealibrary.col DE &l.

A Stochastic Projection Method for Fluid Flow

|. Basic Formulation

Olivier P. Le Matre * Omar M. Knioj-* Habib N. Najmj and Roger G. Ghaneim

*Centre d’Etudes de Etanique d'lle de France, Univergit’Evry Val d’Essone, 40, rue du Pelvoux, 91020
Evry Cedex, FrancejDepartment of Mechanical Engineering, The Johns Hopkins University, Baltimore,
Maryland 21218-2686;Combustion Research Facility, Sandia National Laboratories, Livermore, California
94550; andgDepartment of Civil Engineering, The Johns Hopkins University, Baltimore, Maryland 21218-26¢
E-mail: olm@iup.univ-evry.fr; knio@jhu.edu; hnnajm@ca.sandia.gov; ghanem@jhu.edu

Received November 7, 2000; revised July 10, 2001

We describe the construction and implementation of a stochastic Navier—Stokes
solver. The solver combines a spectral stochastic uncertainty representation scheme
with a finite difference projection method for flow simulation. The uncertainty
guantification scheme is adapted from the spectral stochastic finite element method
(SSFEM), which is based on regarding uncertainty as generating a new dimension
and the solution as being dependent on this dimension. In the SSFEM formalism,
the stochastic dependence is represented in terms of the polynomial chaos system,
and the coefficients in the corresponding spectral representation are obtained us-
ing a Galerkin approach. It is shown that incorporation of the spectral uncertainty
representation scheme into the projection method results in a coupled system of
advection—diffusion equations for the various uncertainty fields, andiecaupled
system of pressure projection steps. This leads to a very efficient stochastic solver,
whose advantages are illustrated using steady and transient simulations of transport
and mixing in a microchannel. g 2001 Academic Press
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1. INTRODUCTION

Simulation of complex physical systems is in many instances made more difficult
various uncertainties, which may include inexact knowledge of system forcing, initial a
boundary conditions, and parametric uncertainties in the physical model and in phys
properties of the medium. The latter may exhibit arandom component with significant spa
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or temporal fluctuations, or may be inaccurately known. An example concerns chemi
or biological microfluid systems, whose modeling involves complex kinetic mechanisr
which may include dozens of species—each characterized by thermodynamic and tran:
properties—and hundreds of elementary reactions specified in terms of rate parame
Thus, simulation and design of these microdevices, which is the primary motivation beh
the present effort, involve complex physical models having a large number of parame
that may be known in an approximate fashion only. Consequently, in order to beco
effective tools, it is essential for simulation-based design approaches to include a ratic
assessment of uncertainty.

Uncertainty quantification is typically based on Monte Carlo (MC) techniques [1, 2] th
essentially amount to performing deterministic simulations for randomly selected con
tions, and then conducting a statistical analysis on the resulting set of realizations in ol
to extract the relevant statistical properties of the process. The Monte Carlo approac
known to be robust and to be able to deal with very complex situations. However, beca
of CPU costs and storage limitations, this approach is often restricted to problems involv
a small number of uncertain parameters and/or degrees of freedom.

Inthis work an alternative approach is adopted which is adapted from the spectral stocl
tic finite element method (SSFEM) [3]. The essential concept in SSFEM is to regard unc
tainty as generating a new dimension and the solution as being dependent on this dimen
A convergent expansion along the new dimension is then sought in terms of the polynor
chaos system [4, 5], and the coefficients in this representation are determined throu
Galerkin approach. SSFEM offers several advantages over MC approaches; in partic
it generally results in efficient uncertainty propagation schemes and yields quantitative
timates of the sensitivity of the solution with respect to uncertainties in model data.
addition, this quantitative information is expressed in a format that permits it to be rez
ily used to probe the dependence of specific observables on particular components o
input data, to design experiments in order to better calibrate and test the validity of p
tulated models, or to assess “off-design” performance. SSFEM has been used in var
applications, including structural mechanics problems (e.g., [3, 6]) and flow in randc
porous media (e.g., [7, 8]). A modified SSFEM approach has been recently applied to c
plex kinetic mechanisms [9], but this method has not yet been used in more general f
problems.

Note, however, that the polynomial chaos expansions on which SSFEM is based
been used in various contexts, for instance in the development of variance reductiol
convergence acceleration techniques [10-12], and also in the analysis of turbulent velc
fields [13—15]. In particular, the analysis of Chorin [15] indicates that in complex problen
involving shock formation or an energy cascade, polynomial chaos expansions may |
their advantages or cease to be useful. Such difficulties do not arise in the present w
which aims at adapting the stochastic representation formalism to microfluid applicatic
at a low Reynolds number.

As summarized in Section 2, we restrict our attention in this paper to the case of advec
and mixing in two-dimensional, incompressible flow. Specifically, we focus on a class
simplified problems in which the uncertainty in the solution process arises as a resul
either random viscosity or the dependence of the viscosity on a random temperature.
first start with a simplified setting in which the temperature is treated as a Gaussian ranc
variable that is spatially uniform. Thus, the fluid viscosity is also uniform, but both linear at
nonlinear viscosity laws are considered in the analysis. A more complicated setting is |
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considered, which consists of a double-inlet channel where the inlet temperature of one o
streams has a random Gaussian component. In this case, the uncertain boundary con
leads to stochastic velocity and temperature fields that are coupled by the tempere
dependence of viscosity.

In Section 3, a spectral uncertainty representation scheme is introduced based or
decomposition of the solution process in terms of the polynomial chaos system. This re
sentation is then introduced into the original system of equations, and a Galerkin proce
is used to determine the coefficients in the spectral expansion. Itis shown that this apprt
results in a coupled system of advection—diffusion equations for the stochastic velocity (
temperature) fields, with a decoupled set of stochastic divergence constraints. This fee
is then exploited in Section 4 by constructing an efficient stochastic projection mett
(SPM) which provides a stochastic characterization of the solution process at a cost th
essentially proportional to the number of terms in the spectral expansion. The advantag
the stochastic projection method (SPM) are illustrated in Section 5 in light of computatiol
experiments conducted for the model problems introduced in Section 3. Major conclusi
are given in Section 6.

2. GOVERNING EQUATIONS

We consider the two-dimensional flow, {r, y) plane, of an incompressible, uniform-
density Newtonian fluid inside a narrow channel of heightind widthB. As shown in
Fig. 1, the boundaries of the computational donfazonsist of inflomI'; ) and outflow(T",)
boundaries, respectively locatedyat= 0 andy = H, and solid boundaried s) located
atx = 0 andx = B.

The evolution of the flow within the channel is governed by the Navier—Stoke
equations

a—qu(u-V)u=—Vp+V~E (@)
V.u=0 (b),

whereu is the velocity field,p is the pressureg is the densityp = p/p, 7 is the viscous
stress, an@d = 7/p. When the dynamic viscosity is uniform, the viscous force can b

=3 H pxd
o ns
= y
T; Microchannel I B
—= Q
X ns

FIG. 1. Schematic representation of the computational domain. The inflow and outflow boundaries, resy
tively I'; andTl, , are located ay = 0 andy = H. I',s refers to the channel walls, which are located at 0 and
x = B. The computational domain consists of the regibe= [0, B] x [0, H].
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expressed as
V.=V [vS =vVau, 2)

wherev is the kinematic viscosity arslis the symmetric part of the velocity gradient tensor.
The governing equations are supplemented with velocity boundary conditions, which con
of imposed velocity at the inflow, outflow conditions &g, and no-slip conditions on the
solid walls.

In addition to the Navier—Stokes equations (1), we also consider the temperature di:
bution within the microchannel. The evolution of the temperature figJds governed by
the energy equation

% +V.-UT)=V-@QVT), 3)
where is the thermal diffusivity. We use adiabatic conditions at the solid walls, outfloy
conditions afl",, and Dirichlet conditions at inflow. Note that when the viscosity is inde
pendent of temperature, the evolution of the flow field can be determined independentl
Eg. (3). On the other hand, wherdepends o, a nontrivial coupling exists between the
Navier—Stokes and the energy equations.

3. STOCHASTIC FORMULATION

3.1. Problems and Methodology

As mentioned in the introduction, we focus on the case of uncertain transport prog
ties and boundary conditions, and restrict our attention to stochastic processes gene
by Gaussian random variables. Within this restricted scope, three different problems
increasing complexity are considered:

1. In the first problem (P1), we consider the case of an uncertain viscosity, which
treated as a Gaussian random variable. The viscosity is assumed to be spatially unif
and solution of the energy equation is not required.

2. In the second problem (P2), we also consider uncertainty in viscosity, which is tak
to be generated by a Gaussian stochastic temperature. The temperature is assumec
uncertain, but spatially uniform, and the uncertainty in viscosity is reflected through
nonlinear viscosity law.

3. Inthethird problem (P3), we consider a coupled problem which involves atemperatt
dependent viscosity and an evolving temperature field. In this case, the uncertainty is
erated by a random boundary condition on the inlet temperature.

As mentioned in the introduction, we develop a spectral representation of the stocha
processes, following the approach outlined in [3]. The methodology is based on a two-s
procedure; first, the uncertain data is expressed in terms of a “normalized” Gaussian ran
variable&. The dependence of the solution procesg ds then expanded in terms of the
polynomial chaos system. In the present case, a single random variable is considere
the polynomial chaos basis functions are orthogonal Hermite polynomials in the rand
variable&. This spectral expansion is introduced into the governing equations and
coefficients are determined using a weighted residual procedure.
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3.2. Statement of P1

As mentioned earlier, for this problem the uncertain viscosity coefficient is spatia
uniform and is modeled as a Gaussian random variable. The governing equations co
of the momentum and continuity equations

5
B—Ltj+(u-V)u=—Vp+vV2u )

V.u=0, (5)
with deterministic boundary conditions on the velocity. The viscosity is expressed as
v =vg+ &1v1, (6)

whereyyg is the mean viscosity; is a “normalized” Gaussian variable (having with zero
mean and unit variance), whilg is a deterministic coefficient which corresponds to the
standard deviation of the viscosity.

Remark. The index or¢ is introduced in order to emphasize the fact that the prese
approach can be extended to the situation whée random process with spatial variation.
In this case, we rely on the Karhunen-dve expansion to decomposas [16],

L
() = v(X) + > Aivi 0&,

i=1

where the\;’s are deterministic coefficients, tlgs are orthogonal (uncorrelated) Gaussian
random variables, the functiong(x) are the eigenvalues of the viscosity autocorrelatior
function, andL is the order of the expansion. While we do not address this situation in tl
present work, we still retain the notation of the more general case. Also note that with
use of Gaussian noise in the viscosity, negative values are, in principle, possible. Below,
situation avoided by ensuring that the standard deviation in viscosity is substantially sme
than the mean. In more general situations, a non-Gaussian distribution may be need
ensure that negative viscosities have negligible likelihood.

The dependence of the solution on the stochastic viscosity is expressed by expandin
velocity and pressure fields as

P

ue) = Ui (Wi (&) ™
i=0
P

POO = > PO (), ®

i=0

where thed; denote the polynomials chaoses in the random varigblg and p; are (yet
undetermined) deterministic coefficients, aRds the order of the polynomial chaos ex-
pansion. Expressions fdr; (in the case of a single Gaussian random variable) are provids
in the Appendix. The effect of the expansion ordeyjs analyzed in Section 5.2.
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Next, we introduce the polynomial chaos expansions (7 and 8) into the governing eq
tions (4 and 5), which results in

P P P P P
>ow +ZZ(U| VU W W) == > W Vp + o+ vE) VY Wiu (9)
i=0

i=0 j=0 i=0 i=0
P
Zin-ui =0. (20)

Multiplying Eq. (9) by Wy and taking the expected value (denoted using the double bracl
{)) we obtain

P P

P
Z% W) + Y ) (U - VU (W W)

i=0 i=0 j=0

P
_—ZVp.\1/wk>+2v2ui<(vo+ulsl)\wk> k=0,...,P. (11
i=0 i=0

By virtue of the orthogonality of the polynomial chaos, (11) reduces to

P P
au
W)+ )03 U WU ()
i=0 j=0
P
= -V (W) + > VUi (o + vE)Wiw) k=0,...,P. (12
i=0

Dividing by (W W), using the fact thatv; = &; (see Appendix), and expanding the last
term finally leads to the following coupled system of evolution equations for the veloci
“modes”:

P P P
JdUk (Wi ¥ W) 2 o (W1 W)
Xy E E WU T e+ vo V2 E vy 2 T
_ (Ui V)uj (Wi W) Pic Vol et v = y (W W)
(13)

We follow a similar treatment for the velocity divergence constraint. Specifically, w
multiply Eq. (10) withw, and then take the expectation to obtain

V.u=0, (14)

which in fact corresponds to a weak formulation of the original continuity equation. Boun
ary conditions and numerical solution schemes will be discussed later.

3.3. Statement of P2

Here, we consider that the viscosity is temperature-dependent and that the temper:
T is uncertain and can be modeled as a Gaussian distribution. \Wg deihote the mean
temperatureT; the standard deviation, and represérds

T=To+&Ti, (15)
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whereg; is anormalized Gaussian random variable with zero mean. We assume a polynol
representation of the viscosity in the neighborhood®énd restrict our attention to the
second-order case
v(T)
Vo

=1+a(T - To) + ax(T — To)?, (16)

wherea; anda, are given constants ang = v(Tp). Substituting Eq. (15) into Eq. (16) we
obtain the following stochastic representationfor

L L ey (17)

wheres; = a; T, andg, = a2T12. Itfollows that the viscous force in the momentum equatior
(4) can be written as

P
V. [v§] =1V Z (1 + B1&1 + ,32512)5% , (18)
i—0

whereu(x) is expanded as in Eq. (7). Multiplying b, and taking the expectation we find

P P P
(V- [vSIW) =vo > V2Ui (Wi W) +voB1 Y V2U; (510 W) +voBz Y V2u; (E7W W ).
i-0 i=0 i—0

(19)
Using the definitionsl; = £ andW, = £2 — 1in Eq. (19) we get
_ P
(V- [vSIW) = vo(1+ B2) V2Urk(WicWi) + voBr D V2 (W W W)
i=0
P
+voBa Y VUi (Wl W) (20)

i=0

Substituting into the Navier—Stokes equation, we obtain the following coupled system
the velocity and pressure modes:

ot == (W W)
P

W W)

- _ 1 VZ VZ < 1¥i Yk

V Py + vo(1+ B2) uk+uoﬂ1§ U

P
(W Wy)

+v Vi ————* k=0,...,P. 21
oﬁzg B (21)

As before, the continuity equation results in the divergence constrsintg, = 0, k =
0,...,P.

Note that ifa, = 0, then the viscosity evolves linearly wiih, and problem P1 is recov-
ered with the choice; = a; T;. On the other hand, whesg # O, it is clear that is no
longer Gaussian. In the computations, we analyze the effect of non-Gaussian statistic
contrasting linear and nonlinear viscosity laws.
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3.4. Statement of P3

In the third problem, the temperature is no longer assumed spatially uniform and
evolution is governed by the energy equation (3). The kinematic viscosity is assumec
vary linearly with temperature, according to

V(X
P09 14 KT T, (22)
0
where Ty is a reference temperaturey = v(Ter), and K’ is a constant. Note that the
temperature-dependence of the viscosity provides a nontrivial coupling between the en
and Navier—Stokes equations. The uncertainty in the process is considered to arise
result of a stochastic temperature profilg, at the inlet of the microchannel.
As before, we rely on the polynomial chaos expansion of the stochastic fields

=]

T =) T0Y (23)
P

ue) = > U)W, (24)
P

PO =Y PO (25)

P
v = vo(L = K'Ten) + oK' > Ti (). (26)

i=0

Introducing (23) into the energy equation, multiplyingdy, and evaluating the expectation,
we get

e e (W W) W) 2
_x o VTi—————2 = AV*Ty k=0,...,P. 27
LUV gy “ e @0

Analogously, we introduce Egs. (24)—(26) into Eq. (1) and perform a similar decompositi
to obtain

PP
auk (B[ W)

+E E U - Viuj————
— 1=0( VY (W)

=-Vp+ 0(1 — K'Trer) V2U

+ oK’ ZZV (TJS(u))< Yl k=0,...,P, (28)

i=0 j=0 ( )

with the same velocity divergence constraints as in Eq. (14).

3.5. Treatment of Boundary Conditions

Similar to the treatment of field variables, a “weak formulation” approach is adopt
for the boundary conditions. For brevity, we only illustrate this approach for the inflo
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condition. As mentioned earlier, the velocity profile is imposed at the channel inlet; \
have

u(x € ) = uin, (29)

whereu;, denotes the deterministic velocity Bt. Expanding the above equation in terms
of the polynomial chaos system, we have

Up(X € I') = Uin (30)
uxel})) =0 k=1,...,P. (32)

Similarly, for the inflow temperature conditions we have
Tkx ely) = (TnWs) k=0,...,P. (32)

Thus, unlike the inlet velocity profile, the inflow temperature may admit stochastic comy
nents whose amplitudes are specified by the right-hand side of Eq. (32). As mentione
Section 3.4, a random temperature component at inflow results in strong coupling betw
the momentum and energy equations.

4. SOLUTION METHOD

It can be observed from the previous section that the equation system governing
evolution of the uncertainty modesg, px, k =0, ..., P, has a similar form to the original
Navier—Stokes equation. Because of the appearance of coupling terms, however, the sy
size is by a factor oP larger than the corresponding deterministic system. If not address
properly, the enlargement of the system size in the stochastic formulation can constitt
major drawback, especially when the implementation of a@a#{) solver is not possible.
Another consideration that has guided the present development is a desire to bast
proposed development on existing deterministic solvers and computer codes.

Our approach to the formulation of the stochastic solver is based on the observation
the velocity divergence constraints alecoupledand this suggests the implementation of
a projection scheme [17] in which the advection and diffusion terms are integrated in a f
fractional step, and the divergence constraints are then enforced in a second fractional
Because the divergence constraints are decoupled, this approach results in B gel of
decoupled pressure projection steps. Since these steps typically account for the bu
the computational effort in incompressible flow simulations, the solution of the stochas
system can be obtained at essentially a cost @f 1 deterministic solutions. Coupled with
the spectral nature of the stochastic representation, this leads to a highly efficient stoch
solver, as illustrated in the examples of the following section. Note that in the case of ir
tiple random variables, the stochastic solution can be determined at a cost essentially
deterministic solutions, whelleis the order of the Karhunen—kege expansion (Eq. (3.2)).
Generally,P andL are generally much smaller than the number of independent MC realiz
tions that are needed for adequate representation of the uncertainty. This feature, tog
with the decoupled structure of the pressure projection steps, is behind the efficiency of S

The formulation of the stochastic solver adapts elements of previously developed I
Mach-number solvers in [18, 19]. We rely on discretization of all fields variables using
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uniform Cartesian mesh with cell sizex and Ay in the x- andy-directions, respectively.
The velocity modesi, are defined on cell edges, while the scalar figddsTy, andvy are
defined on cell centers. Spatial derivatives are approximated using second-order cent
differences.

As mentioned earlier, the governing equations are integrated using a fractional <
projection scheme, and the implementation of the scheme is illustrated for the stoche
formulation developed in Section 3.4. In the first fractional step, we integrate the coup
advection—diffusion equations,

P P
ou (Wi \IJ \\Yj
B> vy B
j=0

= (Wi W)
. — (W)
= vo(1 — K'Tre) V2U + oK' > Y "V - (TjS(up)) ———= (33)
s (Wi W)
for k=0,..., P. The explicit, second-order Adams—Bashforth scheme is used for tt
purpose; we thus have
UE—UE_§ n_} n-1 —
=Mk SHET k=0....P. (34)
whereu; are the predicted velocity modest is the time step,
P P B
Hi = vo(1— K'TenV2uk + > > Cijk[voK'V - (TjS(W)) — (ui - V)uj],  (35)
i=0 j=0
(Wi Wi W)

= ) (36)

and the superscripts refer to the time level. A similar treatment is used for the ene
equation, which is integrated using

T -1 3 1

=J"-2J"! k=o0,...,P 37
At 2 2 ’ T (37)
where
P P
Ji Ekvak—ZZCiiji - VT;. (38)
i=0 j=0

In the second fractional step, we perform a pressure correction to the predicted velo
in order to satisfy the divergence constraints. Specifically, we have

n+1 _
%:-vm k=0,...,P, (39)

where the pressure fields are determined so that the ﬁeld%’Ll satisfy the divergence
constraints in (14), i.e.,

V.ut=0 (40)
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Combining Egs. (39) and (40) results in the following systemdetoupledPoisson
equations:

1

Similar to the original projection method, the above Poisson equations are solved, ir
pendently, subject to Neumann conditions that are obtained by projecting Eq. (39) in
direction normal to the domain boundary [17, 20]. The weak formulation approach outlir
in Section 3.5 is used for this purpose. Fast Fourier-based solvers are employed for
inversion of the discrete operators.

5. RESULTS

5.1. Results for P1
Parabolic Inlet Profile

We start by examining a simplified case where a deterministic parabolic velocity prof
is imposed at the channel inlet. We use

2
Un = 0. v = Vief {1 _ 4<)|; _ 0.5) ] (42)

where (uin, vin) are thex- and y-components of the inlet velocitys is the reference
velocity, andB is the channel width. The flow is characterized by the Reynolds numb
based orB, vg, andVies:

BV,
Re= — (43)
vo

As mentioned earlier, we are interested in applications with moderate to low Reyno
numbers, so that the flow is stable and laminar.

The (deterministic) solution for steady flow in the channel is the well-known Poiseulil
solution [21]

ap ap A Vret
U(X’ y) = 07 U(X, y) = Uin(x): & = 07 a_y = — BZ )

(44)

whereu = pv isthe dynamic viscosity. Thus, when the inlet profile is parabolic, the veloci
field is independent of the axial coordinatg,and, as long as this solution is stable, the
velocity is independent of the viscosity as well.

It follows from the above remarks that for the present inlet velocity conditions, an unc
tainty in the viscosity would only affect the rate of pressure drop. We have

P —4pVier —4pVret 9Po p1
L = = — —\. 45
oy gz " B2 (vo + v161) ay 0 + ay 1 (45)
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Using the definitionaly = 1 andW; = &;, and exploiting the orthogonality of the Hermite
polynomials we get

9Po —4pVietvo
Po _ 0 Vet 46
3y 52 (46)

and

9P — —4pVrev1 — V1 9Po (47)
ay B2 Vo aY .

Furthermore, the varianm%?p of the pressure gradient is given by

2 2 2
2=(G-%))-(E))-(%) @
y 9y ay ay

Thus, for Poiseuille flow, the effect of uncertainty in viscosity can be characterized ana
tically.

The analytical expressions derived above are used to verify the predictions of the stoc
tic projection scheme. Results are obtained for a channel flowRdgth 40.62 andv, /vy =
0.2. The simulations are performed in a domain with aspect FatiB = 6, using a 64<x 256
computational grid, a time stept = 10-2B/ V,ef, and a polynomial chaos expansion with
P = 2. Figure 2 shows the ratio of the computed pressure gradigafdy andapg/ay,
at steady-state, along the centerline of the channel. The results are in excellent agree
with the theoretical prediction in (47). Fg/B > 2, the analytical and computed results
are practically identical, but tiny differences occur near the domain inlet. The maximt
relative error between the exact and computed pressure gradient ratios is, however, (
small and falls below @®5%.

0.2001

0.20005

0.2

(0P1/9y)/(aPO/dy)

0.19995
0
y/B

FIG.2. Pressuregradientratiop;/dy)/(dpo/dy) along the channel centerline versus the normalized stream
wise coordinatey/B. Results are obtained for a channel wiHi B = 6, Re= 40.62, andv; /v, = 0.2. The sim-
ulation is performed using a grid with 64 256 cells,AtV,/B = 1073, and a polynomial chaos expansion with
P =2
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Uniform Inflow

Here, we consider the case of a uniform inlet velocity profile:
Un =0, vin = Ver. (49)

With this inflow condition, the steady (deterministic) flow gradually evolves toward
parabolic Poiseuille profile. The transition reflects the growth of a laminar boundary lay
which eventually fills the channel; this delimits the entrance length, whose value depend
the Reynolds number [22]. Within the transition region, the flow field is no longer unifori
so that, in the stochastic case, all of the velocity and pressure modes exhibit a nontr
behavior.

Inordertoillustrate this behavior, a simulation is performed for a channel with &e24
andv; /vy = 0.3. The simulation is performed using a uniform grid with 64256, a time
stepAtVier/B = 2 x 1073, and a polynomial chaos expansion wih= 3. The unsteady
equations are integrated in time until steady conditions are reached. Results are shov
Figs. 3-5, which depict contours of the streamfunction, the streamwise velocity, and
cross-stream velocity, respectively. The streamfunction is reconstructed from the ste
velocity field. In each figure, plots are generated for the mkaa Q) as well as modes 1
and 2. The results illustrate the growth of the boundary layer in the entrance region. For
mean flow modes(= 0), entrance effects extend upitoB ~ 4, and the the corresponding
distribution becomes uniform atlarger streamwise locations. The streamwise velocity mc

15 15
.30~ 30
a5 .45
09 73
= 74
{7|6' mé‘

~ .004@\
—’//

o008 -
0020

ﬂﬂm%
2800° /@z@@'
/’/—wzm'
. 909500 . 000500
002009
290280

300 = L) ——

FIG.3. Contour plots of the streamfunction distribution corresponding {top),u; (center), andi, (bottom).
Results are obtained for a channel wity B = 6, Re= 8124, andv; /v, = 0.2. The flow is from left to right
along the+y-direction; the entire domain (8 y/B < 6, 0 < x/B < 1) is shown. The simulation is performed
using a grid with 64x 256 cells,AtV,/B = 2 x 1072, and a polynomial chaos expansion with= 3.




494 LE MAITRE ET AL.

FIG. 4. Contour plots of the streamwise velocity component§top), v, (center), and, (bottom). Same
parameters as in Fig. 3.

v1 andv, exhibit appreciable variation up to 4 to 5 channel widths, but the cross-stres
velocity modeslp, u;, andu, have negligible values outside the regior@//B < 3.

Note that the magnitudes of the fields decreask exreases, which reflects the fast
convergence of the spectral stochastic representation. The stochastic velocity field resu
from the uncertainty in viscosity is dominated by the first mode, which exhibits recirculatic
regions near the channel entrance that are symmetric with respect to the centerline. Be
we contrast the present solution with results obtained using a nonlinear viscosity law.

5.2. Solution for P2

In this section, we focus once more on a straight channel with uniform inflow but consic
that the viscosity is temperature-dependent. The nonlinear viscosity law

v(T)
v(To)

T T N\
=1+a(T —TO)+3.2(T—T0)2=1+3.1T0 (T— —1) +a2T02 (T— —1)
0 0

(50)
is assumed, together with a Gaussian, spatially uniform temperature field given by

T = To+ Ti&y, (51)

whereTy is the mean (reference) temperature dnds the standard deviation. Compu-
tations are performed for a channelRé= V,;B/vg = 81.24, wherevy = v(Tp). The
coefficients in the nonlinear viscosity law aagT, = 9 anda, T = 45. Meanwhile, the
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FIG. 5. Contour plots of the cross-stream velocity componegtéop), u; (center), andi, (bottom). Only
the first half of the domain (& y/B < 3) is shown. Same parameters as in Fig. 3.

standard deviation in the temperature is fixedTasTo = 1/30. The nonlinear viscos-
ity law is plotted in Fig. 6 together with the scaled probability density function of th
temperature. Note for this choice of parameters, linearization of the viscosity law (i.
settinga, = 0) would result in the same problem last considered. Thus, the effect of t
nonlinearity in the viscosity law can be examined by comparing the results with those gi\
in Section 3.2.

Numerical simulation of the present problem is performed using the same computatic
grid as in the linear problem, a time st&pV,er/B = 103, and a polynomial chaos expan-
sion with P = 3. Results of the simulation are given in Figs. 7-9, which respectively shc
the distribution of streamfunction, streamwise velocity, and cross-stream velocity at stee
state. As done earlier, the mean distributions are plotted together with the first two mo
The computed results show that the mean flow behavior in the present case is quite sir
to that depicted in Figs. 3-5. In particular, the development of the laminar boundary la
is clearly reflected in the mean streamfunction contours, which are deflected away fi
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FIG. 7. Contour plots of the streamfunction distribution correspondingitdtop), u; (center), andu,
(bottom). Results are obtained for a channel wittB = 6, Re= 81.24, the nonlinear viscosity law and stochastic
temperature shown in Fig. 6. The simulation is performed using a grid with 386 cells,AtV,/B = 102, and
a polynomial chaos expansion with= 3.
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FIG. 8. Contour plots of the streamwise velocity componentstop), v; (center), and, (bottom). Same
parameters as in Fig. 7.

solid boundaries as one moves downstream (Fig. 7). iksreases, the mean cross-strean
velocity component decays rapidly, and a parabolic streamwise velocity profile eventu:
prevails.

On the other hand, the “stochastic modag'andu, exhibit noticeable differences from
the corresponding fields obtained with a linear viscosity law. The distributions revea
more complex structure in the nonlinear case, especially for the second mode where
can notice the presence of multiples lobes that are symmetrically distributed on both s
of the channel centerline. Thus, the nonlinear term in the viscosity law can have a dram
impact on the variance fields.

In order to further examine the effects of the viscosity law on the predictions, we linear
the governing equations and thus consider the unsteady Stokes problem. In this formula
the nonlinear inertial terms are omitted and the evolution of the flow field follows a gradt
decay toward the steady at a rate that is governed by the viscous time scale. This sii
flow evolution enables us to perform straightforward comparison of different solutio
during the transient. In addition, by contrasting the results of the Stokes and Navier—Stc
computations, one can gain additional insight into the role of inertial effects on the struct
of the variance fields. Unsteady Stokes solutions are performed for a viscosity law v
a,TZ = 45 (the nonlinear case) and the predictions are contrasted with results obtai
with a, = O (the linear case). For both cases, instantaneous distributions of the stanc
deviation in thau andv velocity components and in the streamfunction are shown in Fig. 1
The simulations are initialized with the fluid at rest and the fields are generated at a fi
time instantty = Viert/B = 1, before the decay of the flow transient. The varianée
of a generic field variable (x, &) is obtained from the corresponding polynomial chaos
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y/B

FIG. 9. Contour plots of the cross-stream velocity componegtéop), u; (center), andi, (bottom). Only
the first half of the domainy(/B < 3) is shown. Same parameters as in Fig. 7.

expansion using

P 2 P
ot (%) = ((f 0 — fo(x))?) = <<Z f (x)%) > =Y 0 (¥). (52
i=1 i=1

The results in Fig. 10 show that significant magnitude differences exist between the |
dictions obtained using linear and nonlinear viscosity laws. In particular, the differen
between the two standard deviation fields exhibits peak values that are comparable to t
of the corresponding fields. However, unlike our experiences above using the Navier—Stc
solver, the distributions for the two viscosity laws in the Stokes case have a very sim
structure. This indicates that nonlinear advective effects can have a substantial impac
the structure of the variance field.
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FIG. 10. Contour plots of the standard deviation in treomponent (top), the-component (center), and
streamfunction (bottom). Only the first quarter of the domgirc(1.5B) is represented. The results are based on
the computed Stokes solutiontat= Vit /B = 1, using a linear viscosity law witty T, = 9 (left) and a nonlinear
viscosity law witha; To = 9 anda,TZ = 45 (middle). The difference between the two standard deviation field:
is plotted on the right. In both cases, the solutions are obtained on a grid with268 cells, a time step
AtV,/B = 1072, and a polynomial chaos expansion with= 3.
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FIG. 11. Effect of the ordeP and cell sizéh on the standard deviation of tlievelocity.

We also use the Stokes problem to investigate the sensitivity of the computed solut
with respect to refinement of the computational gtidr¢finement) and the order of the
polynomial chaos expansioR fefinement). Results of this study are given in Fig. 11, whict
depicts distributions of standard deviation in the cross-stream velacitiye P-refinement
tests are based on results obtained VAt 3, 5, and 7, using a 64 256 grid and a time
stepAtV,/B = 10-3. Theh-refinement tests are based on three grids having 328,

64 x 256, and 96x 384 cells in thex- andy-directions, respectively; in these teds= 3
and the time steps a&tV,s/B = 102 for the two coarsest grids and>510~* for the
finest. The results show that, for the Stokes problem, the standard deviation distribu
and peak values are essentially unaffected by the vali® afhich demonstrates the fast
convergence of the spectral expansion. Figure 11 also shows that the predictions at two f
grid levels are nearly identical, while a slightly higher peak in the standard deviation can
observed for the coarsest grid level. Further examination of the results (not shown) rev:
that differences between the coarse level predictions and the more refined computation
restricted to a small region near the channel inlet, and that at larger downstream distar
the coarse grid provides accurate prediction of the solution.

5.3. Solution for P3

Implementation of the stochastic scheme for P3 is illustrated based on simulations
the flow and temperature fields in the double-inlet microchannel schematically showr
Fig. 12. The channelinlet consists of two streams having identical parabolic velocity profi
with peak velocityVier. The two inlet streams are separated by a plate of thickBess
Thus, the problem can be treated as the wake of a slender bluff body of ittt is
located at the center of the channel. The flow is characterized by the Reynolds nun
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FIG. 12. Schematic illustration of the double-inlet microchannel.

Re= V,tB/vo, the blockage ratidd/B, and the Prandtl numbeér/vg. As indicated in
Section 3.4py = v(Tye) IS the reference viscosity. Note that the blockage ratioRexchn

be combined to define a Reynolds number based on the plate thicRegss, V;etB/vo =

Re D/B. If Re; is large enough, the wake of the plate is unstable and periodic vort
shedding is observed, at least for small downstream distances. This situation is consic
in the example below. Specifically, we consider a doublet inlet microchannel with blocka
ratio D/B = 0.2 and Reynolds numb&e= 826. The Reynolds humber based on the plat:
thickness ifRep = 1652.

As mentioned in Section 3.4, the uncertainty in this problem is taken to arise as aresu
a stochastic temperature boundary condition. Specifically, the temperature of the first i
is taken to be deterministic and equallig. Meanwhile, the temperature of the second inle
is treated as a random Gaussian variable, with a mean valiug afid standard deviation of
0.1Tt. The fluid viscosity is assumed to depend on the temperature according to Eq. (
This provides a strong coupling between the momentum and energy equations, whic
examined in the computations by varying the coupling parameéteSpecifically, results
are obtained using = 0.1,0.2,and 0.4, wheré = K'T. Inall cases, the Prandtl number
A/vo = 6. The computations are performed in a domain withB = 5, using a 100« 352
grid, a time stepAtV,er/B = 2 x 1073, and a polynomial chaos expansion with= 3.

Figures 13 and 14 depict instantaneous contours of streamwise and cross-stream vel
respectively, at a dimensionless titées/ B = 100. Plotted in each figure are distributions
of the mean instantaneous prediction together with those of modes 1 and 2; results obte
usingK = 0.4 are used. The distributions of the mean field exhibit the presence of we
defined patches that are arranged in a wavy pattern, which reflects the developmel
an unstable wake. The results also reveal that the strengths of the vortices shed int
wake gradually decrease with downstream distance. This effect can be clearly observe
Fig. 14, which shows that the magnitude of the cross-stream velocity component decre
with increasing distance from the channel entrance. Thus, the strengths of the vortices d
with y and, for the selected value of the Reynolds number, one would in fact expect a ste
parabolic profile at large downstream distances.

Near the channel entrance, the distributionsipindu, (Figs. 13 and 14) also reveal
the presence of well-defined structures that are spatially well correlated with those of
mean field. The velocity magnitudes of the first mode are roughly an order of magnitt
higher than those of the second mode. With increasing downstream distance, the magni
of u; andu, gradually decrease. This trend is also expected because, at large downstr
distances, one would recover a parabolic velocity profile whose strength is solely determ
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FIG. 15. Instantaneous distribution @%, T;, andT, attV,,/B = 100. Temperature is normalized usifg,
and results obtained using = 0.4 are used. The flow is from bottom to top, along #g-direction.

by the volume flux in the channel. In this problem, the volume flux is deterministic, whic
indicates that all velocity modes with> 1 vanish asy increases.

Figure 15 shows instantaneous temperature contourKfer 0.4, generated at the
same time as in Figs. 13 and 14. The distributionsTofand T, show the presence of
well-defined patches of alternating signs which are consequently arranged at the cent
the domain. The strength of the temperature fluctuations within these patches firstincre
with y, reaches a maximum value aroupB ~ 2, and then decreases as we move furthe
downstream. Near the channel entrance, the distributidn adflects the inlet temperature
conditions, which are deterministic for the first inlet and stochastic in the secondiTihus.
vanishes near the first inlet, peaks near the second, with a gradual transition region a
face of the solid plate. As one moves downstream, the width of this transition region
creases leading to the formation of an asymmetric wavy pattern around the wake center
with small positive values near the left wall and high values near the right wall. Note tt
the peak value decreases as one moves downstream while the minimum increases, \

FIG. 13. Instantaneous distribution f, v;, andv, attV,/B = 100. Velocity is normalized using,, and
results obtained usiny = 0.4 are used. The flow is from bottom to top, along #hg-direction.

FIG. 14. Instantaneous distribution af, u;, andu, attV,/B = 100. Velocity is normalized using,, and
results obtained usiny = 0.4 are used. The flow is from bottom to top, along thg-direction.
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FIG. 16. Instantaneous distribution of the standard deviation of the normalizeelocity field at time
tVier/ B = 100; top:K = 0.1, middle:K = 0.2, bottom:K = 0.4.

illustrates how the uncertainty in the boundary condition diffuses as it advected by
flow.

The close correspondence between the temperature fluctuations in the distribufigns ¢
andT, in Fig. 15 is remarkable, and it is instructive to use the uncertainty representati
scheme to interpret the results. The polynomial chaos expansion of the temperature |
can be written as

T(X, &) = To(X)Wo(E1) + T1) Wi (E1) + Ta()Wa(&r) + - - -
= To(X) + T1 (&1 + To(X¥) (82 — 1) + - --. (53)

For &, = 0 the two inlet streams have an identical temperatligg, This implies that in
this case the temperature field is uniform and everywhere equaltdJsingé; = 0 and
truncation atP = 2, Eq. (53) gives

T(X, 61 =0) = To(x) — T2(x), (54)

i.e., the temperature prediction correspondingte- 0 is the difference between the mean
and second mode. Since, as indicated abbye, £, = 0) = T, the fluctuations iffp and

T, should cancel out, so long as the spectral truncation used is valid. This constraint i
fact reflected in the distributions shown in Fig. 15, which also indicates that the (truncat
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FIG. 17. Instantaneous distribution of the standard deviation of the normalizeglocity field at time
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FIG. 18. Instantaneous distribution of the standard deviation of the normalized temperature field at ti
tViet/ B = 100; top:K = 0.1, middle:K = 0.2, bottom:K = 0.4.
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higher modes have little impact on the present predictions. One should also note that
(TX)) =To(X) # T(x, 61 =0), (55)

which indicates that the expected temperature field does not coincide with the “determil
tic” prediction for&; = 0.

Instantaneous distributions of the standard deviatioru,00, and T are shown in
Figs. 16-18, respectively. Plotted are results obtained/af/ B = 100 usingK = 0.1,
0.2, and 0.4. The results indicate that the normalized standard deviation for the stream
(v) and cross-streanu) velocity components increase with increasing with As ex-
pected, the largest standard deviation values occur in the near wake, where strong vol
structures are present. On the other hand, the contours of the temperature standard dev
exhibit a wavy, asymmetric spreading band near the center of the domain. Unlike the s
dard deviation of the velocity field, the standard deviation of the temperature is essenti
insensitive to the coupling paramet€r Thus, for the present conditions, the propagatior
of the uncertainty in the temperature field appears to be dominated by the determini
thermal diffusion coefficient and advection with the (stochastic) mean velocity field.

Profiles of time-averaged values of the streamwise velocity, cross-stream velocity, -
temperature are givenin Fig. 19. The figure depicts profiles of the first three modes, gener
atthe streamwise plarg B = 1.25 using simulations witK = 0.1, 0.2, and 0.4. The time-
averaged profiles reveal trends similar to those observed in the instantaneous distribut
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FIG. 19. Time-averaged profiles & (top),v (center) andr' (bottom), at the plang/B = 1.25. The modes
correspond ti = O (left), k = 1 (center) and = 2 (right). The curves depict results obtained ko= 0.1, 0.2
and 0. 4.
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The mean velocity profiles clearly reflect the development of the unstable wake. Meanwt
the uncertainty in the velocity field is dominated by the contribution of the first mode, who
peak values are significantly larger than those of the second mode. The results also ind
that asK increases, the uncertainty in the velocity field also increases. This behaviol
in sharp contrast with that observed for the temperature profile. The mean tempera
prediction exhibits a pronounced dependencekKomvhile the first mode appears to be
insensitive toK . As discussed earlier, the fluctuations in the profile$gadndT, are quite
similar, but are dominated bY; which is forced at the inlet boundary. The above trend:
are also reflected in Fig. 20, which depicts profiles of the normalized standard deviatior
the mean velocity components and of temperature. Combined with the results in Fig. 1
is evident that the contribution of the first mode to the standard deviation is dominant. C
can also observe the insensitivity of the temperature standard deviation to the selected \
of K, and the strong dependence of the velocity uncertainty on the coupling parameter
We conclude the discussion with a brief remark on the possible use of the quantita
uncertainty propagation scheme. For instance, in the case of the streamwise profile
standard deviation is vanishingly small at cross-stream locatiof8 ¢ 0.3 andx/B ~
0.7) where the mean signal approaches its peak value (compare Figs. 19 and 20). The ra
the standard deviation to the mean value is clearly minimized at the corresponding locati
Consequently, these positions provide ideal sites for probing the streamwise velocity,
fashion that minimizes the effect of the uncertainty in stochastic inlet temperature. T
illustrates how the stochastic simulation results may be applied to experiment design.

6. CONCLUSION

Inthis paper, a stochastic scheme is developed which allows the propagation of uncerte
in incompressible Navier—Stokes simulations. The uncertainty representation schem
based on the polynomial chaos expansion of the solution in terms of the random in
data, and on determining the coefficients of this spectral using a Galerkin procedure.
computational uncertainty propagation scheme is constructed by combining the uncerte
representation scheme with a projection method for an incompressible Newtonian fluic
is shown that this construction results in a coupled system of advection—diffusion equati
for the stochastic velocity coefficients, and in a decoupled system of projection steps
the corresponding pressure fields.

Implementation of the stochastic solver is illustrated based on simulations of steady
transient flow in a microchannel at low to moderate Reynolds numbers. Attention is focu:
on the simplified situation where the uncertain data can be represented as a random vari
and the resulting stochastic scheme is applied to analyze uncertainty in transport prope
and boundary conditions. The simulations highlight the efficiency of the stochastic solv
which benefits from the fast convergence of the spectral representation. In particular, fo
cases analyzed, it is found that only a small number of terms in the spectral expansior
needed to ensure an accurate representation. The efficiency of the computational scl
also stems from the decoupled structure of the discrete projection steps, which enable
to determine the stochastic solution at the cost of a few deterministic calculations.

As mentioned earlier, the present analysis has been restricted to the case of a single
dom variable and to incompressible flow of a nonreacting fluid. It should be noted that
first restriction can be immediately relaxed within the present uncertainty representat
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framework which has been applied in a variety of more elaborate situations involving r:
dom processes, correlated random inputs, and stochastic data with non-Gaussian sta
[23, 24]. It is also appears that the incompressible and nonreacting flow assumptions
also be relaxed, in particular by relying on low-Mach-number reacting flow models (e.
[18, 19]). Extension of the current scheme along these directions is the focus of ongc
efforts.

APPENDIX

The first five polynomialsk; and their corresponding varian(:éjz) are provided in the
following table:

Order | Polynomial¥; (£) (w?)
j=0 Yo(6) =1 (wg =1
j=1 i) =& (w3 =1
j=2 Wp(6)=82-1 (w2) =2
j=3 Wa(6) =&%— 3¢ (W2) =6
j=4 Wa(€) = &4 — 662+ 3 (W2) = 24

The expectation is defined with respect to the Gaussian measure:

I &
<f>—m/mf(s)exp( Z)ds.

The polynomials satisfy the orthogonality conditiphy ;) = O fori # j. Expectations
of the form (W; ¥; W) arise in the governing equations. Numerical values fgrk < 4
are given in the following table:

Expectation of¥; W; Wy value
(WoWoWo) 1
(WoW1W1) 1
(WoW2W2) 2
(WoW3W3) 6
(WoW4aWys) 24
(WU1W1 W) 2
(W1 W W3) 6
(W1W3Wy) 24
(WoWo W) 8
(W W, Wy) 24
(WoW3W3) 36
(W WsaWy) 192
(W3W3Wy) 216
( )

1728
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Other expectations can be deduced from permutation of indices,
(Wi W) = (Wi W W) = (W50 W) = (W) 0) = (W 0g) = (W W),

and values that are not reported in the table are null.
For a viscosity law of the form

@)_1+ﬁs+ﬁg

the first three terms of the polynomial chaos expansion of the incompressible momen
and continuity equations are given by:

3o + (Up - V)Uo+ V po — vo(1+ B2) V2Up

Mode O:
= —(Up - V)Uy — 2(Uz - V)Uz +10B1V2U1 + 20082 V2, V- Up=0
883+ (Ug - V)Ug+ (Up - V)Up + 2[(Us - V)Uz + (Uz - VU]
Mode 1:
= —Vp1+vo(1+ 3B2)V2Uy 4+ v0B1V2Uo + 201 VZU,  V -up =0
3U2 + (U2 - V)Ug + (Ug - VIUz + (U1 - V)Ur + Vo
Mode 2:

=vo(1+ ,32)V2U2 + Uoﬂlvzul + Vo,BQVZUo V-u,=0

The above expansion is truncatedPat= 2.
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