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A Stochastic Projection Method for Fluid Flow

I. Basic Formulation
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We describe the construction and implementation of a stochastic Navier–Stokes
solver. The solver combines a spectral stochastic uncertainty representation scheme
with a finite difference projection method for flow simulation. The uncertainty
quantification scheme is adapted from the spectral stochastic finite element method
(SSFEM), which is based on regarding uncertainty as generating a new dimension
and the solution as being dependent on this dimension. In the SSFEM formalism,
the stochastic dependence is represented in terms of the polynomial chaos system,
and the coefficients in the corresponding spectral representation are obtained us-
ing a Galerkin approach. It is shown that incorporation of the spectral uncertainty
representation scheme into the projection method results in a coupled system of
advection–diffusion equations for the various uncertainty fields, and in adecoupled
system of pressure projection steps. This leads to a very efficient stochastic solver,
whose advantages are illustrated using steady and transient simulations of transport
and mixing in a microchannel. c© 2001 Academic Press
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1. INTRODUCTION

Simulation of complex physical systems is in many instances made more difficult by
various uncertainties, which may include inexact knowledge of system forcing, initial and
boundary conditions, and parametric uncertainties in the physical model and in physical
properties of the medium. The latter may exhibit a random component with significant spatial
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or temporal fluctuations, or may be inaccurately known. An example concerns chemical
or biological microfluid systems, whose modeling involves complex kinetic mechanisms
which may include dozens of species—each characterized by thermodynamic and transport
properties—and hundreds of elementary reactions specified in terms of rate parameters.
Thus, simulation and design of these microdevices, which is the primary motivation behind
the present effort, involve complex physical models having a large number of parameters
that may be known in an approximate fashion only. Consequently, in order to become
effective tools, it is essential for simulation-based design approaches to include a rational
assessment of uncertainty.

Uncertainty quantification is typically based on Monte Carlo (MC) techniques [1, 2] that
essentially amount to performing deterministic simulations for randomly selected condi-
tions, and then conducting a statistical analysis on the resulting set of realizations in order
to extract the relevant statistical properties of the process. The Monte Carlo approach is
known to be robust and to be able to deal with very complex situations. However, because
of CPU costs and storage limitations, this approach is often restricted to problems involving
a small number of uncertain parameters and/or degrees of freedom.

In this work an alternative approach is adopted which is adapted from the spectral stochas-
tic finite element method (SSFEM) [3]. The essential concept in SSFEM is to regard uncer-
tainty as generating a new dimension and the solution as being dependent on this dimension.
A convergent expansion along the new dimension is then sought in terms of the polynomial
chaos system [4, 5], and the coefficients in this representation are determined through a
Galerkin approach. SSFEM offers several advantages over MC approaches; in particular,
it generally results in efficient uncertainty propagation schemes and yields quantitative es-
timates of the sensitivity of the solution with respect to uncertainties in model data. In
addition, this quantitative information is expressed in a format that permits it to be read-
ily used to probe the dependence of specific observables on particular components of the
input data, to design experiments in order to better calibrate and test the validity of pos-
tulated models, or to assess “off-design” performance. SSFEM has been used in various
applications, including structural mechanics problems (e.g., [3, 6]) and flow in random
porous media (e.g., [7, 8]). A modified SSFEM approach has been recently applied to com-
plex kinetic mechanisms [9], but this method has not yet been used in more general fluid
problems.

Note, however, that the polynomial chaos expansions on which SSFEM is based have
been used in various contexts, for instance in the development of variance reduction or
convergence acceleration techniques [10–12], and also in the analysis of turbulent velocity
fields [13–15]. In particular, the analysis of Chorin [15] indicates that in complex problems
involving shock formation or an energy cascade, polynomial chaos expansions may lose
their advantages or cease to be useful. Such difficulties do not arise in the present work,
which aims at adapting the stochastic representation formalism to microfluid applications
at a low Reynolds number.

As summarized in Section 2, we restrict our attention in this paper to the case of advection
and mixing in two-dimensional, incompressible flow. Specifically, we focus on a class of
simplified problems in which the uncertainty in the solution process arises as a result of
either random viscosity or the dependence of the viscosity on a random temperature. We
first start with a simplified setting in which the temperature is treated as a Gaussian random
variable that is spatially uniform. Thus, the fluid viscosity is also uniform, but both linear and
nonlinear viscosity laws are considered in the analysis. A more complicated setting is then
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considered, which consists of a double-inlet channel where the inlet temperature of one of the
streams has a random Gaussian component. In this case, the uncertain boundary condition
leads to stochastic velocity and temperature fields that are coupled by the temperature
dependence of viscosity.

In Section 3, a spectral uncertainty representation scheme is introduced based on the
decomposition of the solution process in terms of the polynomial chaos system. This repre-
sentation is then introduced into the original system of equations, and a Galerkin procedure
is used to determine the coefficients in the spectral expansion. It is shown that this approach
results in a coupled system of advection–diffusion equations for the stochastic velocity (and
temperature) fields, with a decoupled set of stochastic divergence constraints. This feature
is then exploited in Section 4 by constructing an efficient stochastic projection method
(SPM) which provides a stochastic characterization of the solution process at a cost that is
essentially proportional to the number of terms in the spectral expansion. The advantages of
the stochastic projection method (SPM) are illustrated in Section 5 in light of computational
experiments conducted for the model problems introduced in Section 3. Major conclusions
are given in Section 6.

2. GOVERNING EQUATIONS

We consider the two-dimensional flow, in(x, y) plane, of an incompressible, uniform-
density Newtonian fluid inside a narrow channel of heightH and widthB. As shown in
Fig. 1, the boundaries of the computational domainÄ consist of inflow(0i )and outflow(0o)

boundaries, respectively located aty = 0 andy = H , and solid boundaries(0ns) located
at x = 0 andx = B.

The evolution of the flow within the channel is governed by the Navier–Stokes
equations

∂u
∂t
+ (u ·∇)u = −∇p+∇ · σ̄ (a)

(1)
∇ · u = 0 (b),

whereu is the velocity field,p̃ is the pressure,ρ is the density,p ≡ p̃/ρ, τ is the viscous
stress, and ¯σ ≡ τ/ρ. When the dynamic viscosity is uniform, the viscous force can be

FIG. 1. Schematic representation of the computational domain. The inflow and outflow boundaries, respec-
tively 0i and0o , are located aty = 0 andy = H . 0ns refers to the channel walls, which are located atx = 0 and
x = B. The computational domain consists of the regionÄ ≡ [0, B] × [0, H ].
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expressed as

∇ · σ̄ ≡∇ · [νS̄] = ν∇2u, (2)

whereν is the kinematic viscosity and̄Sis the symmetric part of the velocity gradient tensor.
The governing equations are supplemented with velocity boundary conditions, which consist
of imposed velocity at the inflow, outflow conditions on0o, and no-slip conditions on the
solid walls.

In addition to the Navier–Stokes equations (1), we also consider the temperature distri-
bution within the microchannel. The evolution of the temperature field,T , is governed by
the energy equation

∂T

∂t
+∇ · (uT) =∇ · (λ∇T), (3)

whereλ is the thermal diffusivity. We use adiabatic conditions at the solid walls, outflow
conditions at0o, and Dirichlet conditions at inflow. Note that when the viscosity is inde-
pendent of temperature, the evolution of the flow field can be determined independently of
Eq. (3). On the other hand, whenν depends onT , a nontrivial coupling exists between the
Navier–Stokes and the energy equations.

3. STOCHASTIC FORMULATION

3.1. Problems and Methodology

As mentioned in the introduction, we focus on the case of uncertain transport proper-
ties and boundary conditions, and restrict our attention to stochastic processes generated
by Gaussian random variables. Within this restricted scope, three different problems of
increasing complexity are considered:

1. In the first problem (P1), we consider the case of an uncertain viscosity, which is
treated as a Gaussian random variable. The viscosity is assumed to be spatially uniform,
and solution of the energy equation is not required.

2. In the second problem (P2), we also consider uncertainty in viscosity, which is taken
to be generated by a Gaussian stochastic temperature. The temperature is assumed to be
uncertain, but spatially uniform, and the uncertainty in viscosity is reflected through a
nonlinear viscosity law.

3. In the third problem (P3), we consider a coupled problem which involves a temperature-
dependent viscosity and an evolving temperature field. In this case, the uncertainty is gen-
erated by a random boundary condition on the inlet temperature.

As mentioned in the introduction, we develop a spectral representation of the stochastic
processes, following the approach outlined in [3]. The methodology is based on a two-step
procedure; first, the uncertain data is expressed in terms of a “normalized” Gaussian random
variableξ . The dependence of the solution process onξ is then expanded in terms of the
polynomial chaos system. In the present case, a single random variable is considered so
the polynomial chaos basis functions are orthogonal Hermite polynomials in the random
variableξ . This spectral expansion is introduced into the governing equations and the
coefficients are determined using a weighted residual procedure.
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3.2. Statement of P1

As mentioned earlier, for this problem the uncertain viscosity coefficient is spatially
uniform and is modeled as a Gaussian random variable. The governing equations consist
of the momentum and continuity equations

∂u
∂t
+ (u ·∇)u = −∇p+ ν∇2u (4)

∇ · u = 0, (5)

with deterministic boundary conditions on the velocity. The viscosity is expressed as

ν = ν0+ ξ1ν1, (6)

whereν0 is the mean viscosity,ξ1 is a “normalized” Gaussian variable (having with zero
mean and unit variance), whileν1 is a deterministic coefficient which corresponds to the
standard deviation of the viscosity.

Remark. The index onξ is introduced in order to emphasize the fact that the present
approach can be extended to the situation whereν is a random process with spatial variation.
In this case, we rely on the Karhunen–Lo`eve expansion to decomposeν as [16],

ν(x) = ν0(x)+
L∑

i=1

λi νi (x)ξi ,

where theλi ’s are deterministic coefficients, theξi ’s are orthogonal (uncorrelated) Gaussian
random variables, the functionsνi (x) are the eigenvalues of the viscosity autocorrelation
function, andL is the order of the expansion. While we do not address this situation in the
present work, we still retain the notation of the more general case. Also note that with the
use of Gaussian noise in the viscosity, negative values are, in principle, possible. Below, this
situation avoided by ensuring that the standard deviation in viscosity is substantially smaller
than the mean. In more general situations, a non-Gaussian distribution may be needed to
ensure that negative viscosities have negligible likelihood.

The dependence of the solution on the stochastic viscosity is expressed by expanding the
velocity and pressure fields as

u(x) =
P∑

i=0

ui (x)9i (ξ1) (7)

p(x) =
P∑

i=0

pi (x)9i (ξ1), (8)

where the9i denote the polynomials chaoses in the random variableξ1, ui and pi are (yet
undetermined) deterministic coefficients, andP is the order of the polynomial chaos ex-
pansion. Expressions for9i (in the case of a single Gaussian random variable) are provided
in the Appendix. The effect of the expansion order,P, is analyzed in Section 5.2.
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Next, we introduce the polynomial chaos expansions (7 and 8) into the governing equa-
tions (4 and 5), which results in

P∑
i=0

9i
∂ui

∂t
+

P∑
i=0

P∑
j=0

(ui ·∇)u j9i9 j = −
P∑

i=0

9i∇pi + (ν0+ ν1ξ1)∇2
P∑

i=0

9i ui (9)

P∑
i=0

9i∇ · ui = 0. (10)

Multiplying Eq. (9) by9k and taking the expected value (denoted using the double bracket
〈 〉) we obtain

P∑
i=0

∂ui

∂t
〈9i9k〉 +

P∑
i=0

P∑
j=0

(ui ·∇)u j 〈9i9 j9k〉

= −
P∑

i=0

∇pi 〈9i9k〉 +
P∑

i=0

∇2ui 〈(ν0+ ν1ξ1)9i9k〉 k = 0, . . . , P. (11)

By virtue of the orthogonality of the polynomial chaos, (11) reduces to

∂uk

∂t
〈9k9k〉 +

P∑
i=0

P∑
j=0

(ui ·∇)u j 〈9i9 j9k〉

= −∇pk〈9k9k〉 +
P∑

i=0

∇2ui 〈(ν0+ ν1ξ1)9i9k〉 k = 0, . . . , P. (12)

Dividing by 〈9k9k〉, using the fact that91 = ξ1 (see Appendix), and expanding the last
term finally leads to the following coupled system of evolution equations for the velocity
“modes”:

∂uk

∂t
+

P∑
i=0

P∑
j=0

(ui ·∇)u j
〈9i9 j9k〉
〈9k9k〉 = −∇pk + ν0∇2uk + ν1

P∑
i=0

∇2ui
〈919i9k〉
〈9k9k〉 .

(13)

We follow a similar treatment for the velocity divergence constraint. Specifically, we
multiply Eq. (10) with9k and then take the expectation to obtain

∇ · uk = 0, (14)

which in fact corresponds to a weak formulation of the original continuity equation. Bound-
ary conditions and numerical solution schemes will be discussed later.

3.3. Statement of P2

Here, we consider that the viscosity is temperature-dependent and that the temperature
T is uncertain and can be modeled as a Gaussian distribution. We letT0 denote the mean
temperature,T1 the standard deviation, and representT as

T = T0+ ξ1T1, (15)
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whereξ1 is a normalized Gaussian random variable with zero mean. We assume a polynomial
representation of the viscosity in the neighborhood ofT0 and restrict our attention to the
second-order case

ν(T)

ν0
= 1+ a1(T − T0)+ a2(T − T0)

2, (16)

wherea1 anda2 are given constants andν0 ≡ ν(T0). Substituting Eq. (15) into Eq. (16) we
obtain the following stochastic representation forν:

ν(T0+ ξ1T1)

ν0
= 1+ β1ξ1+ β2ξ

2
1 , (17)

whereβ1 ≡ a1T1 andβ2 ≡ a2T2
1 . It follows that the viscous force in the momentum equation

(4) can be written as

∇ · [νS̄] = ν0∇ ·
[

P∑
i=0

(
1+ β1ξ1+ β2ξ

2
1

)
S̄i9i

]
, (18)

whereu(x) is expanded as in Eq. (7). Multiplying by9k and taking the expectation we find

〈∇ · [νS̄]9k〉= ν0

P∑
i=0

∇2ui 〈9i9k〉+ν0β1

P∑
i=0

∇2ui 〈ξ19i9k〉+ν0β2

P∑
i=0

∇2ui
〈
ξ2

19i9k
〉
.

(19)
Using the definitions91 = ξ1 and92 = ξ2

1 − 1 in Eq. (19) we get

〈∇ · [νS̄]9k〉 = ν0(1+ β2)∇2uk〈9k9k〉 + ν0β1

P∑
i=0

∇2ui 〈919i9k〉

+ ν0β2

P∑
i=0

∇2ui 〈929i9k〉. (20)

Substituting into the Navier–Stokes equation, we obtain the following coupled system for
the velocity and pressure modes:

∂uk

∂t
+

P∑
i=0

P∑
j=0

(ui ·∇)u j
〈9i9 j9k〉
〈9k9k〉

=−∇pk + ν0(1+ β2)∇2uk + ν0β1

P∑
i=0

∇2ui
〈919i9k〉
〈9k9k〉

+ ν0β2

P∑
i=0

∇2ui
〈929i9k〉
〈9k9k〉 k = 0, . . . , P. (21)

As before, the continuity equation results in the divergence constraints∇ · uk = 0, k =
0, . . . , P.

Note that ifa2 = 0, then the viscosity evolves linearly withT , and problem P1 is recov-
ered with the choiceν1 = a1T1. On the other hand, wherea2 6= 0, it is clear thatν is no
longer Gaussian. In the computations, we analyze the effect of non-Gaussian statistics by
contrasting linear and nonlinear viscosity laws.
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3.4. Statement of P3

In the third problem, the temperature is no longer assumed spatially uniform and its
evolution is governed by the energy equation (3). The kinematic viscosity is assumed to
vary linearly with temperature, according to

ν(x)
ν0
= 1+ K ′(T(x)− Tref), (22)

whereTref is a reference temperature,ν0 ≡ ν(Tref), and K ′ is a constant. Note that the
temperature-dependence of the viscosity provides a nontrivial coupling between the energy
and Navier–Stokes equations. The uncertainty in the process is considered to arise as a
result of a stochastic temperature profile,Tin, at the inlet of the microchannel.

As before, we rely on the polynomial chaos expansion of the stochastic fields

T(x) =
P∑

i=0

Ti (x)9i (23)

u(x) =
P∑

i=0

ui (x)9i (24)

p(x) =
P∑

i=0

pi (x)9i (25)

ν(x) = ν0(1− K ′Tref)+ ν0K ′
P∑

i=0

Ti (x)9i . (26)

Introducing (23) into the energy equation, multiplying by9k, and evaluating the expectation,
we get

∂Tk

∂t
+

P∑
i=0

P∑
j=0

ui ·∇Tj
〈9i9 j9k〉
〈9k9k〉 = λ∇

2Tk k = 0, . . . , P. (27)

Analogously, we introduce Eqs. (24)–(26) into Eq. (1) and perform a similar decomposition
to obtain

∂uk

∂t
+

P∑
i=0

P∑
j=0

(ui ·∇)u j
〈9i9 j9k〉
〈9k9k〉

= −∇pk + ν0(1− K ′Tref)∇2uk

+ ν0K ′
P∑

i=0

P∑
j=0

∇ · (Tj S̄(ui ))
〈9i9 j9k〉
〈9k9k〉 k = 0, . . . , P, (28)

with the same velocity divergence constraints as in Eq. (14).

3.5. Treatment of Boundary Conditions

Similar to the treatment of field variables, a “weak formulation” approach is adopted
for the boundary conditions. For brevity, we only illustrate this approach for the inflow
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condition. As mentioned earlier, the velocity profile is imposed at the channel inlet; we
have

u(x ∈ 0i ) = uin, (29)

whereuin denotes the deterministic velocity at0i . Expanding the above equation in terms
of the polynomial chaos system, we have

u0(x ∈ 0i ) = uin (30)

uk(x ∈ 0i ) = 0 k = 1, . . . , P. (31)

Similarly, for the inflow temperature conditions we have

Tk(x ∈ 0i ) = 〈Tin9k〉 k = 0, . . . , P. (32)

Thus, unlike the inlet velocity profile, the inflow temperature may admit stochastic compo-
nents whose amplitudes are specified by the right-hand side of Eq. (32). As mentioned in
Section 3.4, a random temperature component at inflow results in strong coupling between
the momentum and energy equations.

4. SOLUTION METHOD

It can be observed from the previous section that the equation system governing the
evolution of the uncertainty modesuk, pk, k = 0, . . . , P, has a similar form to the original
Navier–Stokes equation. Because of the appearance of coupling terms, however, the system
size is by a factor ofP larger than the corresponding deterministic system. If not addressed
properly, the enlargement of the system size in the stochastic formulation can constitute a
major drawback, especially when the implementation of a fastO(N) solver is not possible.
Another consideration that has guided the present development is a desire to base the
proposed development on existing deterministic solvers and computer codes.

Our approach to the formulation of the stochastic solver is based on the observation that
the velocity divergence constraints aredecoupled, and this suggests the implementation of
a projection scheme [17] in which the advection and diffusion terms are integrated in a first
fractional step, and the divergence constraints are then enforced in a second fractional step.
Because the divergence constraints are decoupled, this approach results in a set ofP + 1
decoupled pressure projection steps. Since these steps typically account for the bulk of
the computational effort in incompressible flow simulations, the solution of the stochastic
system can be obtained at essentially a cost ofP + 1 deterministic solutions. Coupled with
the spectral nature of the stochastic representation, this leads to a highly efficient stochastic
solver, as illustrated in the examples of the following section. Note that in the case of mul-
tiple random variables, the stochastic solution can be determined at a cost essentially ofL
deterministic solutions, whereL is the order of the Karhunen–Lo`eve expansion (Eq. (3.2)).
Generally,P andL are generally much smaller than the number of independent MC realiza-
tions that are needed for adequate representation of the uncertainty. This feature, together
with the decoupled structure of the pressure projection steps, is behind the efficiency of SPM.

The formulation of the stochastic solver adapts elements of previously developed low-
Mach-number solvers in [18, 19]. We rely on discretization of all fields variables using a
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uniform Cartesian mesh with cell size1x and1y in thex- andy-directions, respectively.
The velocity modesuk are defined on cell edges, while the scalar fieldspk, Tk, andνk are
defined on cell centers. Spatial derivatives are approximated using second-order centered
differences.

As mentioned earlier, the governing equations are integrated using a fractional step
projection scheme, and the implementation of the scheme is illustrated for the stochastic
formulation developed in Section 3.4. In the first fractional step, we integrate the coupled
advection–diffusion equations,

∂uk

∂t
+

P∑
i=0

P∑
j=0

(ui ·∇)u j
〈9i9 j9k〉
〈9k9k〉

= ν0(1− K ′Tref)∇2uk + ν0K ′
P∑

i=0

P∑
j=0

∇ · (Tj S̄(ui ))
〈9i9 j9k〉
〈9k9k〉 (33)

for k = 0, . . . , P. The explicit, second-order Adams–Bashforth scheme is used for this
purpose; we thus have

u∗k − un
k

1t
= 3

2
Hn

k −
1

2
Hn−1

k k = 0, . . . , P, (34)

whereu∗k are the predicted velocity modes,1t is the time step,

Hk ≡ ν0(1− K ′Tref)∇2uk +
P∑

i=0

P∑
j=0

Ci jk [ν0K ′∇ · (Tj S̄(ui ))− (ui ·∇)u j ], (35)

Ci jk ≡ 〈9i9 j9k〉
〈9k9k〉 , (36)

and the superscripts refer to the time level. A similar treatment is used for the energy
equation, which is integrated using

Tn+1
k − Tn

k

1t
= 3

2
Jn − 1

2
Jn−1 k = 0, . . . , P, (37)

where

Jk ≡ λ∇2Tk −
P∑

i=0

P∑
j=0

Ci jk ui ·∇Tj . (38)

In the second fractional step, we perform a pressure correction to the predicted velocity
in order to satisfy the divergence constraints. Specifically, we have

un+1
k − u∗k
1t

= −∇pk k = 0, . . . , P, (39)

where the pressure fieldspk are determined so that the fieldsun+1
k satisfy the divergence

constraints in (14), i.e.,

∇ · un+1
k = 0 (40)



STOCHASTIC PROJECTION METHOD 491

Combining Eqs. (39) and (40) results in the following system ofdecoupledPoisson
equations:

∇2 pk = − 1

1t
∇ · u∗k k = 0, . . . , P. (41)

Similar to the original projection method, the above Poisson equations are solved, inde-
pendently, subject to Neumann conditions that are obtained by projecting Eq. (39) in the
direction normal to the domain boundary [17, 20]. The weak formulation approach outlined
in Section 3.5 is used for this purpose. Fast Fourier-based solvers are employed for the
inversion of the discrete operators.

5. RESULTS

5.1. Results for P1

Parabolic Inlet Profile

We start by examining a simplified case where a deterministic parabolic velocity profile
is imposed at the channel inlet. We use

uin = 0, vin = Vref

[
1− 4

(
x

B
− 0.5

)2]
, (42)

where(uin, vin) are thex- and y-components of the inlet velocity,Vref is the reference
velocity, andB is the channel width. The flow is characterized by the Reynolds number
based onB, ν0, andVref:

Re≡ BVref

ν0
. (43)

As mentioned earlier, we are interested in applications with moderate to low Reynolds
numbers, so that the flow is stable and laminar.

The (deterministic) solution for steady flow in the channel is the well-known Poiseuille
solution [21]

u(x, y) = 0, v(x, y) = vin(x),
∂p

∂x
= 0,

∂p

∂y
= −4µVref

B2
, (44)

whereµ = ρν is the dynamic viscosity. Thus, when the inlet profile is parabolic, the velocity
field is independent of the axial coordinate,y, and, as long as this solution is stable, the
velocity is independent of the viscosity as well.

It follows from the above remarks that for the present inlet velocity conditions, an uncer-
tainty in the viscosity would only affect the rate of pressure drop. We have

∂p

∂y
= −4ρVref

B2
ν = −4ρVref

B2
(ν0+ ν1ξ1) ≡ ∂p0

∂y
90+ ∂p1

∂y
91. (45)
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Using the definitions90 = 1 and91 = ξ1, and exploiting the orthogonality of the Hermite
polynomials we get

∂p0

∂y
= −4ρVrefν0

B2
(46)

and

∂p1

∂y
= −4ρVrefν1

B2
= ν1

ν0

∂p0

∂y
. (47)

Furthermore, the varianceσ 2
∂p of the pressure gradient is given by

σ 2
∂p ≡

〈(
∂p

∂y
− ∂p0

∂y

)2〉
=
〈(

∂p1

∂y
91

)2〉
=
(
∂p1

∂y

)2

. (48)

Thus, for Poiseuille flow, the effect of uncertainty in viscosity can be characterized analy-
tically.

The analytical expressions derived above are used to verify the predictions of the stochas-
tic projection scheme. Results are obtained for a channel flow withRe= 40.62 andν1/ν0 =
0.2. The simulations are performed in a domain with aspect ratioH/B = 6, using a 64× 256
computational grid, a time step1t = 10−3B/Vref, and a polynomial chaos expansion with
P = 2. Figure 2 shows the ratio of the computed pressure gradients∂p1/∂y and∂p0/∂y,
at steady-state, along the centerline of the channel. The results are in excellent agreement
with the theoretical prediction in (47). Fory/B > 2, the analytical and computed results
are practically identical, but tiny differences occur near the domain inlet. The maximum
relative error between the exact and computed pressure gradient ratios is, however, quite
small and falls below 0.05%.

FIG. 2. Pressure gradient ratio(∂p1/∂y)/(∂p0/∂y) along the channel centerline versus the normalized stream-
wise coordinatey/B. Results are obtained for a channel withH/B = 6, Re= 40.62, andν1/ν0 = 0.2. The sim-
ulation is performed using a grid with 64× 256 cells,1tVref/B = 10−3, and a polynomial chaos expansion with
P = 2.
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Uniform Inflow

Here, we consider the case of a uniform inlet velocity profile:

uin = 0, vin = Vref. (49)

With this inflow condition, the steady (deterministic) flow gradually evolves toward a
parabolic Poiseuille profile. The transition reflects the growth of a laminar boundary layer
which eventually fills the channel; this delimits the entrance length, whose value depends on
the Reynolds number [22]. Within the transition region, the flow field is no longer uniform
so that, in the stochastic case, all of the velocity and pressure modes exhibit a nontrivial
behavior.

In order to illustrate this behavior, a simulation is performed for a channel with Re= 81.24
andν1/ν0 = 0.3. The simulation is performed using a uniform grid with 64× 256, a time
step1tVref/B = 2× 10−3, and a polynomial chaos expansion withP = 3. The unsteady
equations are integrated in time until steady conditions are reached. Results are shown in
Figs. 3–5, which depict contours of the streamfunction, the streamwise velocity, and the
cross-stream velocity, respectively. The streamfunction is reconstructed from the steady
velocity field. In each figure, plots are generated for the mean (k = 0) as well as modes 1
and 2. The results illustrate the growth of the boundary layer in the entrance region. For the
mean flow modes (k = 0), entrance effects extend up toy/B ' 4, and the the corresponding
distribution becomes uniform at larger streamwise locations. The streamwise velocity modes

FIG. 3. Contour plots of the streamfunction distribution corresponding tou0 (top),u1 (center), andu2 (bottom).
Results are obtained for a channel withH/B = 6, Re= 81.24, andν1/ν0 = 0.2. The flow is from left to right
along the+y-direction; the entire domain (0≤ y/B ≤ 6, 0≤ x/B ≤ 1) is shown. The simulation is performed
using a grid with 64× 256 cells,1tVref/B = 2× 10−3, and a polynomial chaos expansion withP = 3.
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FIG. 4. Contour plots of the streamwise velocity componentsv0 (top), v1 (center), andv2 (bottom). Same
parameters as in Fig. 3.

v1 andv2 exhibit appreciable variation up to 4 to 5 channel widths, but the cross-stream
velocity modesu0, u1, andu2 have negligible values outside the region 0≤ y/B ≤ 3.

Note that the magnitudes of the fields decrease ask increases, which reflects the fast
convergence of the spectral stochastic representation. The stochastic velocity field resulting
from the uncertainty in viscosity is dominated by the first mode, which exhibits recirculation
regions near the channel entrance that are symmetric with respect to the centerline. Below,
we contrast the present solution with results obtained using a nonlinear viscosity law.

5.2. Solution for P2

In this section, we focus once more on a straight channel with uniform inflow but consider
that the viscosity is temperature-dependent. The nonlinear viscosity law

ν(T)

ν(T0)
= 1+ a1(T − T0)+ a2 (T − T0)

2 = 1+ a1T0

(
T

T0
− 1

)
+ a2T2

0

(
T

T0
− 1

)2

(50)

is assumed, together with a Gaussian, spatially uniform temperature field given by

T = T0+ T1ξ1, (51)

whereT0 is the mean (reference) temperature andT1 is the standard deviation. Compu-
tations are performed for a channel atRe= VrefB/ν0 = 81.24, whereν0 ≡ ν(T0). The
coefficients in the nonlinear viscosity law area1T0 = 9 anda2T2

0 = 45. Meanwhile, the
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FIG. 5. Contour plots of the cross-stream velocity componentsu0 (top), u1 (center), andu2 (bottom). Only
the first half of the domain (0≤ y/B ≤ 3) is shown. Same parameters as in Fig. 3.

standard deviation in the temperature is fixed asT1/T0 = 1/30. The nonlinear viscos-
ity law is plotted in Fig. 6 together with the scaled probability density function of the
temperature. Note for this choice of parameters, linearization of the viscosity law (i.e.,
settinga2 = 0) would result in the same problem last considered. Thus, the effect of the
nonlinearity in the viscosity law can be examined by comparing the results with those given
in Section 3.2.

Numerical simulation of the present problem is performed using the same computational
grid as in the linear problem, a time step1tVref/B = 10−3, and a polynomial chaos expan-
sion with P = 3. Results of the simulation are given in Figs. 7–9, which respectively show
the distribution of streamfunction, streamwise velocity, and cross-stream velocity at steady-
state. As done earlier, the mean distributions are plotted together with the first two modes.
The computed results show that the mean flow behavior in the present case is quite similar
to that depicted in Figs. 3–5. In particular, the development of the laminar boundary layer
is clearly reflected in the mean streamfunction contours, which are deflected away from
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FIG. 6. Dependence of viscosity on the temperature given in Eq. (50) and the scaled probability density
function ofT .

FIG. 7. Contour plots of the streamfunction distribution corresponding tou0 (top), u1 (center), andu2

(bottom). Results are obtained for a channel withH/B = 6,Re= 81.24, the nonlinear viscosity law and stochastic
temperature shown in Fig. 6. The simulation is performed using a grid with 64× 256 cells,1tVref/B = 10−3, and
a polynomial chaos expansion withP = 3.
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FIG. 8. Contour plots of the streamwise velocity componentsv0 (top), v1 (center), andv2 (bottom). Same
parameters as in Fig. 7.

solid boundaries as one moves downstream (Fig. 7). Asy increases, the mean cross-stream
velocity component decays rapidly, and a parabolic streamwise velocity profile eventually
prevails.

On the other hand, the “stochastic modes”u1 andu2 exhibit noticeable differences from
the corresponding fields obtained with a linear viscosity law. The distributions reveal a
more complex structure in the nonlinear case, especially for the second mode where one
can notice the presence of multiples lobes that are symmetrically distributed on both sides
of the channel centerline. Thus, the nonlinear term in the viscosity law can have a dramatic
impact on the variance fields.

In order to further examine the effects of the viscosity law on the predictions, we linearize
the governing equations and thus consider the unsteady Stokes problem. In this formulation,
the nonlinear inertial terms are omitted and the evolution of the flow field follows a gradual
decay toward the steady at a rate that is governed by the viscous time scale. This simple
flow evolution enables us to perform straightforward comparison of different solutions
during the transient. In addition, by contrasting the results of the Stokes and Navier–Stokes
computations, one can gain additional insight into the role of inertial effects on the structure
of the variance fields. Unsteady Stokes solutions are performed for a viscosity law with
a2T2

0 = 45 (the nonlinear case) and the predictions are contrasted with results obtained
with a2 = 0 (the linear case). For both cases, instantaneous distributions of the standard
deviation in theu andv velocity components and in the streamfunction are shown in Fig. 10.
The simulations are initialized with the fluid at rest and the fields are generated at a fixed
time instantta = Vref t/B = 1, before the decay of the flow transient. The varianceσ 2

f

of a generic field variablef (x, ξ1) is obtained from the corresponding polynomial chaos
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FIG. 9. Contour plots of the cross-stream velocity componentsu0 (top), u1 (center), andu2 (bottom). Only
the first half of the domain (y/B ≤ 3) is shown. Same parameters as in Fig. 7.

expansion using

σ 2
f (x) ≡ 〈( f (x)− f0(x))2〉 =

〈(
P∑

i=1

fi (x)9i

)2〉
=

P∑
i=1

f 2
i (x)

〈
92

i

〉
. (52)

The results in Fig. 10 show that significant magnitude differences exist between the pre-
dictions obtained using linear and nonlinear viscosity laws. In particular, the difference
between the two standard deviation fields exhibits peak values that are comparable to those
of the corresponding fields. However, unlike our experiences above using the Navier–Stokes
solver, the distributions for the two viscosity laws in the Stokes case have a very similar
structure. This indicates that nonlinear advective effects can have a substantial impact on
the structure of the variance field.
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FIG. 10. Contour plots of the standard deviation in theu-component (top), thev-component (center), and
streamfunction (bottom). Only the first quarter of the domain (y ≤ 1.5B) is represented. The results are based on
the computed Stokes solution atta = Vref t/B = 1, using a linear viscosity law witha1T0 = 9 (left) and a nonlinear
viscosity law witha1T0 = 9 anda2T2

0 = 45 (middle). The difference between the two standard deviation fields
is plotted on the right. In both cases, the solutions are obtained on a grid with 64× 256 cells, a time step
1tVref/B = 10−3, and a polynomial chaos expansion withP = 3.
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FIG. 11. Effect of the orderP and cell sizeh on the standard deviation of theu-velocity.

We also use the Stokes problem to investigate the sensitivity of the computed solution
with respect to refinement of the computational grid (h refinement) and the order of the
polynomial chaos expansion (P refinement). Results of this study are given in Fig. 11, which
depicts distributions of standard deviation in the cross-stream velocityu. TheP-refinement
tests are based on results obtained withP = 3, 5, and 7, using a 64× 256 grid and a time
step1tVref/B = 10−3. Theh-refinement tests are based on three grids having 32× 128,
64× 256, and 96× 384 cells in thex- andy-directions, respectively; in these tests,P = 3
and the time steps are1tVref/B = 10−3 for the two coarsest grids and 5× 10−4 for the
finest. The results show that, for the Stokes problem, the standard deviation distribution
and peak values are essentially unaffected by the value ofP, which demonstrates the fast
convergence of the spectral expansion. Figure 11 also shows that the predictions at two finest
grid levels are nearly identical, while a slightly higher peak in the standard deviation can be
observed for the coarsest grid level. Further examination of the results (not shown) reveals
that differences between the coarse level predictions and the more refined computations are
restricted to a small region near the channel inlet, and that at larger downstream distances,
the coarse grid provides accurate prediction of the solution.

5.3. Solution for P3

Implementation of the stochastic scheme for P3 is illustrated based on simulations of
the flow and temperature fields in the double-inlet microchannel schematically shown in
Fig. 12. The channel inlet consists of two streams having identical parabolic velocity profiles
with peak velocityVref. The two inlet streams are separated by a plate of thicknessD.
Thus, the problem can be treated as the wake of a slender bluff body of widthD that is
located at the center of the channel. The flow is characterized by the Reynolds number
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FIG. 12. Schematic illustration of the double-inlet microchannel.

Re≡ VrefB/ν0, the blockage ratioD/B, and the Prandtl numberλ/ν0. As indicated in
Section 3.4,ν0 ≡ ν(Tref) is the reference viscosity. Note that the blockage ratio andRecan
be combined to define a Reynolds number based on the plate thickness,ReD ≡ VrefB/ν0 =
Re D/B. If ReD is large enough, the wake of the plate is unstable and periodic vortex
shedding is observed, at least for small downstream distances. This situation is considered
in the example below. Specifically, we consider a doublet inlet microchannel with blockage
ratio D/B = 0.2 and Reynolds numberRe= 826. The Reynolds number based on the plate
thickness isReD = 165.2.

As mentioned in Section 3.4, the uncertainty in this problem is taken to arise as a result of
a stochastic temperature boundary condition. Specifically, the temperature of the first inlet
is taken to be deterministic and equal toTref. Meanwhile, the temperature of the second inlet
is treated as a random Gaussian variable, with a mean value ofTref and standard deviation of
0.1Tref. The fluid viscosity is assumed to depend on the temperature according to Eq. (22).
This provides a strong coupling between the momentum and energy equations, which is
examined in the computations by varying the coupling parameterK ′. Specifically, results
are obtained usingK = 0.1, 0.2, and 0.4, whereK ≡ K ′Tref. In all cases, the Prandtl number
λ/ν0 = 6. The computations are performed in a domain withH/B = 5, using a 100× 352
grid, a time step1tVref/B = 2× 10−3, and a polynomial chaos expansion withP = 3.

Figures 13 and 14 depict instantaneous contours of streamwise and cross-stream velocity,
respectively, at a dimensionless timetVref/B = 100. Plotted in each figure are distributions
of the mean instantaneous prediction together with those of modes 1 and 2; results obtained
usingK = 0.4 are used. The distributions of the mean field exhibit the presence of well-
defined patches that are arranged in a wavy pattern, which reflects the development of
an unstable wake. The results also reveal that the strengths of the vortices shed into the
wake gradually decrease with downstream distance. This effect can be clearly observed in
Fig. 14, which shows that the magnitude of the cross-stream velocity component decreases
with increasing distance from the channel entrance. Thus, the strengths of the vortices decay
with y and, for the selected value of the Reynolds number, one would in fact expect a steady
parabolic profile at large downstream distances.

Near the channel entrance, the distributions ofu1 andu2 (Figs. 13 and 14) also reveal
the presence of well-defined structures that are spatially well correlated with those of the
mean field. The velocity magnitudes of the first mode are roughly an order of magnitude
higher than those of the second mode. With increasing downstream distance, the magnitudes
of u1 andu2 gradually decrease. This trend is also expected because, at large downstream
distances, one would recover a parabolic velocity profile whose strength is solely determined
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FIG. 15. Instantaneous distribution ofT0, T1, andT2 at tVref/B = 100. Temperature is normalized usingTref,
and results obtained usingK = 0.4 are used. The flow is from bottom to top, along the+y-direction.

by the volume flux in the channel. In this problem, the volume flux is deterministic, which
indicates that all velocity modes withk ≥ 1 vanish asy increases.

Figure 15 shows instantaneous temperature contours forK = 0.4, generated at the
same time as in Figs. 13 and 14. The distributions ofT0 and T2 show the presence of
well-defined patches of alternating signs which are consequently arranged at the center of
the domain. The strength of the temperature fluctuations within these patches first increases
with y, reaches a maximum value aroundy/B ∼ 2, and then decreases as we move further
downstream. Near the channel entrance, the distribution ofT1 reflects the inlet temperature
conditions, which are deterministic for the first inlet and stochastic in the second; thus,T1

vanishes near the first inlet, peaks near the second, with a gradual transition region at the
face of the solid plate. As one moves downstream, the width of this transition region in-
creases leading to the formation of an asymmetric wavy pattern around the wake centerline,
with small positive values near the left wall and high values near the right wall. Note that
the peak value decreases as one moves downstream while the minimum increases, which

FIG. 13. Instantaneous distribution ofv0, v1, andv2 at tVref/B = 100. Velocity is normalized usingVref, and
results obtained usingK = 0.4 are used. The flow is from bottom to top, along the+y-direction.

FIG. 14. Instantaneous distribution ofu0, u1, andu2 at tVref/B = 100. Velocity is normalized usingVref, and
results obtained usingK = 0.4 are used. The flow is from bottom to top, along the+y-direction.
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FIG. 16. Instantaneous distribution of the standard deviation of the normalizedu-velocity field at time
tVref/B = 100; top:K = 0.1, middle:K = 0.2, bottom:K = 0.4.

illustrates how the uncertainty in the boundary condition diffuses as it advected by the
flow.

The close correspondence between the temperature fluctuations in the distributions ofT0

andT2 in Fig. 15 is remarkable, and it is instructive to use the uncertainty representation
scheme to interpret the results. The polynomial chaos expansion of the temperature field
can be written as

T(x, ξ1) = T0(x)90(ξ1)+ T1(x)91(ξ1)+ T2(x)92(ξ1)+ · · ·
= T0(x)+ T1(x)ξ1+ T2(x)

(
ξ2

1 − 1
)+ · · · . (53)

For ξ1 = 0 the two inlet streams have an identical temperature,Tref. This implies that in
this case the temperature field is uniform and everywhere equal toTref. Usingξ1 = 0 and
truncation atP = 2, Eq. (53) gives

T(x, ξ1 = 0) ' T0(x)− T2(x), (54)

i.e., the temperature prediction corresponding toξ1 = 0 is the difference between the mean
and second mode. Since, as indicated above,T(x, ξ1 = 0) = Tref, the fluctuations inT0 and
T2 should cancel out, so long as the spectral truncation used is valid. This constraint is in
fact reflected in the distributions shown in Fig. 15, which also indicates that the (truncated)



FIG. 17. Instantaneous distribution of the standard deviation of the normalizedv-velocity field at time
tVref/B = 100; top:K = 0.1, middle:K = 0.2, bottom:K = 0.4.

FIG. 18. Instantaneous distribution of the standard deviation of the normalized temperature field at time
tVref/B = 100; top:K = 0.1, middle:K = 0.2, bottom:K = 0.4.
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higher modes have little impact on the present predictions. One should also note that

〈T(x)〉 = T0(x) 6= T(x, ξ1 = 0), (55)

which indicates that the expected temperature field does not coincide with the “determinis-
tic” prediction forξ1 = 0.

Instantaneous distributions of the standard deviation ofu, v, and T are shown in
Figs. 16–18, respectively. Plotted are results obtained attVref/B = 100 usingK = 0.1,
0.2, and 0.4. The results indicate that the normalized standard deviation for the streamwise
(v) and cross-stream (u) velocity components increase with increasing withK . As ex-
pected, the largest standard deviation values occur in the near wake, where strong vortical
structures are present. On the other hand, the contours of the temperature standard deviation
exhibit a wavy, asymmetric spreading band near the center of the domain. Unlike the stan-
dard deviation of the velocity field, the standard deviation of the temperature is essentially
insensitive to the coupling parameterK . Thus, for the present conditions, the propagation
of the uncertainty in the temperature field appears to be dominated by the deterministic
thermal diffusion coefficient and advection with the (stochastic) mean velocity field.

Profiles of time-averaged values of the streamwise velocity, cross-stream velocity, and
temperature are given in Fig. 19. The figure depicts profiles of the first three modes, generated
at the streamwise planey/B = 1.25 using simulations withK = 0.1, 0.2, and 0.4. The time-
averaged profiles reveal trends similar to those observed in the instantaneous distributions.

FIG. 19. Time-averaged profiles ofU (top),v (center) andT (bottom), at the planey/B = 1.25. The modes
correspond tok = 0 (left), k = 1 (center) andk = 2 (right). The curves depict results obtained forK = 0.1, 0.2
and 0. 4.
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FIG. 20. Time-averaged standard deviation profiles at the planey = 1.25B for the normalizedu-velocity
(top), the normalizedv-velocity (middle), and the normalized temperature (bottom). The curves depict results
obtained forK = 0.1, 0.2, and 0.4.
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The mean velocity profiles clearly reflect the development of the unstable wake. Meanwhile,
the uncertainty in the velocity field is dominated by the contribution of the first mode, whose
peak values are significantly larger than those of the second mode. The results also indicate
that asK increases, the uncertainty in the velocity field also increases. This behavior is
in sharp contrast with that observed for the temperature profile. The mean temperature
prediction exhibits a pronounced dependence onK while the first mode appears to be
insensitive toK . As discussed earlier, the fluctuations in the profiles ofT0 andT2 are quite
similar, but are dominated byT1 which is forced at the inlet boundary. The above trends
are also reflected in Fig. 20, which depicts profiles of the normalized standard deviation of
the mean velocity components and of temperature. Combined with the results in Fig. 19, it
is evident that the contribution of the first mode to the standard deviation is dominant. One
can also observe the insensitivity of the temperature standard deviation to the selected value
of K , and the strong dependence of the velocity uncertainty on the coupling parameter.

We conclude the discussion with a brief remark on the possible use of the quantitative
uncertainty propagation scheme. For instance, in the case of the streamwise profile, the
standard deviation is vanishingly small at cross-stream locations (x/B ∼ 0.3 andx/B ∼
0.7) where the mean signal approaches its peak value (compare Figs. 19 and 20). The ratio of
the standard deviation to the mean value is clearly minimized at the corresponding locations.
Consequently, these positions provide ideal sites for probing the streamwise velocity, in a
fashion that minimizes the effect of the uncertainty in stochastic inlet temperature. This
illustrates how the stochastic simulation results may be applied to experiment design.

6. CONCLUSION

In this paper, a stochastic scheme is developed which allows the propagation of uncertainty
in incompressible Navier–Stokes simulations. The uncertainty representation scheme is
based on the polynomial chaos expansion of the solution in terms of the random input
data, and on determining the coefficients of this spectral using a Galerkin procedure. The
computational uncertainty propagation scheme is constructed by combining the uncertainty
representation scheme with a projection method for an incompressible Newtonian fluid. It
is shown that this construction results in a coupled system of advection–diffusion equations
for the stochastic velocity coefficients, and in a decoupled system of projection steps for
the corresponding pressure fields.

Implementation of the stochastic solver is illustrated based on simulations of steady and
transient flow in a microchannel at low to moderate Reynolds numbers. Attention is focused
on the simplified situation where the uncertain data can be represented as a random variable,
and the resulting stochastic scheme is applied to analyze uncertainty in transport properties
and boundary conditions. The simulations highlight the efficiency of the stochastic solver,
which benefits from the fast convergence of the spectral representation. In particular, for all
cases analyzed, it is found that only a small number of terms in the spectral expansion are
needed to ensure an accurate representation. The efficiency of the computational scheme
also stems from the decoupled structure of the discrete projection steps, which enables us
to determine the stochastic solution at the cost of a few deterministic calculations.

As mentioned earlier, the present analysis has been restricted to the case of a single ran-
dom variable and to incompressible flow of a nonreacting fluid. It should be noted that the
first restriction can be immediately relaxed within the present uncertainty representation
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framework which has been applied in a variety of more elaborate situations involving ran-
dom processes, correlated random inputs, and stochastic data with non-Gaussian statistics
[23, 24]. It is also appears that the incompressible and nonreacting flow assumptions can
also be relaxed, in particular by relying on low-Mach-number reacting flow models (e.g.,
[18, 19]). Extension of the current scheme along these directions is the focus of ongoing
efforts.

APPENDIX

The first five polynomials9 j and their corresponding variance〈92
j 〉 are provided in the

following table:

Order j Polynomial9 j (ξ) 〈92
j 〉

j = 0 90(ξ) = 1 〈92
0〉 = 1

j = 1 91(ξ) = ξ 〈92
1〉 = 1

j = 2 92(ξ) = ξ2− 1 〈92
2〉 = 2

j = 3 93(ξ) = ξ3− 3ξ 〈92
3〉 = 6

j = 4 94(ξ) = ξ4− 6ξ2+ 3 〈92
4〉 = 24

The expectation is defined with respect to the Gaussian measure:

〈 f 〉 = 1√
2π

∫ ∞
−∞

f (ξ) exp

(
−ξ

2

2

)
dξ.

The polynomials satisfy the orthogonality condition〈9i9 j 〉 = 0 for i 6= j . Expectations
of the form〈9i9 j9k〉 arise in the governing equations. Numerical values fori, j, k ≤ 4
are given in the following table:

Expectation of9i9 j9k value

〈909090〉 1
〈909191〉 1
〈909292〉 2
〈909393〉 6
〈909494〉 24

〈919192〉 2
〈919293〉 6
〈919394〉 24

〈929292〉 8
〈929294〉 24
〈929393〉 36
〈929494〉 192

〈939394〉 216

〈949494〉 1728
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Other expectations can be deduced from permutation of indices,

〈9i9 j9k〉 = 〈9i9k9 j 〉 = 〈9 j9i9k〉 = 〈9 j9k9i 〉 = 〈9k9i9 j 〉 = 〈9k9 j9i 〉,

and values that are not reported in the table are null.
For a viscosity law of the form

ν(ξ)

ν0
= 1+ β1ξ + β2ξ

2,

the first three terms of the polynomial chaos expansion of the incompressible momentum
and continuity equations are given by:

Mode 0:


∂u0
∂t + (u0 ·∇)u0+∇p0− ν0(1+β2)∇2u0

= −(u1 ·∇)u1− 2(u2 ·∇)u2+ ν0β1∇2u1+ 2ν0β2∇2u2 ∇ · u0= 0

Mode 1:


∂u1
∂t + (u1 ·∇)u0+ (u0 ·∇)u1+ 2[(u1 ·∇)u2+ (u2 ·∇)u1]

= −∇p1+ ν0(1+ 3β2)∇2u1+ ν0β1∇2u0+ 2ν0β1∇2u2 ∇ · u1 = 0

Mode 2:


∂u2
∂t + (u2 ·∇)u0+ (u0 ·∇)u2+ (u1 ·∇)u1+∇p2

= ν0(1+ β2)∇2u2+ ν0β1∇2u1+ ν0β2∇2u0 ∇ · u2 = 0.

The above expansion is truncated atP = 2.
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